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Abstract. It is demonstrated that the second-order Markovian closures frequently used in 
turbulence theory imply an H theorem for inviscid flow with an ultraviolet spectral cut-off. 
That is, from the inviscid closure equations, it follows that a certain functional of the energy 
spectrum (namely entropy) increases monotonically in time to a maximum value at absolute 
equilibrium. This is shown explicitly for isotropic homogeneous flow in dimensions d 3 2, 
and then a generalised theorem which covers a wide class of systems of current interest is 
presented. It is shown that the H theorem for closure can be derived from a Gibbs-type H 
theorem for the exact non-dissipative dynamics. 

1. Introduction 

In the kinetic theory of classical and quantum many-particle systems, statistical 
evolution is described by a Boltzmann equation. This equation provides a collisional 
representation for nonlinear interactions, and through the Boltzmann H theorem it 
implies monotonic relaxation toward absolute canonical equilibrium. Here we show to 
what extent this same framework formally applies in statistical macroscopic fluid 
dynamics. 

Naturally, since canonical equilibrium applies only to conservative systems, a strong 
analogy can be produced only by confining ourselves to non-dissipative idealisations of 
fluid systems. For example, such an idealised system is represented by the incompres- 
sible Navier-Stokes equation when an ultraviolet spectral cut-off is imposed and 
viscosity is set equal to zero. Also for such idealisations Liouville’s theorem applies 
(Lee 1952); that is, the evolution of the system can be represented as incompressible 
flow in a phase space. 

Unlike the dynamical equations for many-particle systems, the primitive field 
equations for fluids cannot generally be put in Hamiltonian form even in the non- 

* Work supported in part by the National Science Foundation under Grant No DMR-77-10210. Based in 
part on a thesis submitted by GFC in partial fulfillment of the requirements for PhD, Harvard University, 
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7 The National Center for Atmospheric Research is sponsored by the National Science Foundation. 
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dissipative idealisation (e.g. the inviscid Navier-Stokes equation is not derivable from a 
Hamiltonian in terms of Eulerian velocity fields (Millikan 1929)). Thus we are aiming 
for a generalisation of Boltzmann's H theorem for non-Hamiltonian systems which 
nonetheless obey Liouville's theorem. Such a generalisation is non-trivial for the 
following reason. The proof of Boltzmann's H theorem involves manipulations which 
invoke the collisional nature of the interaction integrals. This collisional structure is 
induced by the underlying Hamiltonian dynamics. The direct analogue of the Boltz- 
mann equation is the second-order Markovian closure equation in statistical fluid 
dynamics. This equation can be obtained by techniques directly analogous to those 
used in the statistical quantum field theory derivation of the Boltzmann equation 
(Kadanoff and Baym 1962, Kraichnan 1959, 1971, Carnevale 1979, Carnevale and 
Martin 1981). An alternative derivation is the eddy-damped quasi-normal Markovian 
(EDQNM) procedure (Orszag 1977, Rose and Sulem 1978) which is generalised here in 
§ 4. This equation does not, in general, provide a collisional interpretation of nonlinear 
interactions and so an H theorem cannot be implied by direct analogy with many- 
particle physics. A well known exception to this is the case of wave interactions in fluids 
where the wave amplitude equations derive from a Hamiltonian formalism. In that case 
there is a well defined collision cross section and the second-order Markovian closure 
equation is indeed a Boltzmann equation; hence, the H theorem follows directly 
(Hasselmann 1966, Webb 1978). 

In 5 2 we derive the H theorem for incompressible, isotropic, homogeneous, 
d-dimensional flow, We have also produced H theorems specific to more complicated 
systems of current interest (Carnevale 1979). These include MHD turbulence in both 
three dimensions (Pouquet et a1 1976) and two dimensions (Pouquet 1978), a two-layer 
model of stratified flow (Salmon 1978a), and a model of flow over irregular topography 
(Holloway 1978). All these specific cases are covered by the generalised formalism of 
8 9  3, 4 and 5 .  Section 3 establishes an abstract notation and some general statistical 
mechanical results. It also provides us with a generalisation of Boltzmann's entropy as 
the information content of the second-order correlation matrix. In § 4 we first provide a 
derivation of the second-order Markovian closure equation in its most general form, 
and then deduce from this a generalised H theorem. Finally § 5  emphasises the 
fundamental role played by Liouville's theorem in the relaxation process. 

Relaxation to equilibrium has been demonstrated in numerical simulation of 
inviscid two- and three-dimensional flow (Fox and Orszag 1973, Seyler et a1 1975, 
Orszag 1977), and it is a well known aspect of second-order Markovian closure that the 
canonical equilibrium spectrum is a stationary solution (Orszag 1977). H theorems 
have been demonstrated previously for inviscid flow by Cook (1974) and Montgomery 
(1976) ; however, we believe that our presentation is the first comprehensive analytical 
study of this general aspect of second-order Markovian closure. 

2. Isotropic homogeneous flow 

The second-order Markovian closure equation for incompressible, isotropic, mirror- 
symmetric, homogeneous, d- dimensional flow is 
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(cf Fournier and Frisch 1978, Rose and Sulem 1978)t. u k  is the modal energy defined 
by 

(2.2) 

where the angular brackets imply an ensemble average. U is the kinematic viscosity, and 
d is the spatial dimension. The a i%L and bipd, coefficients with the restriction k + p + 4 = 
0 can be explicitly written as 

with a the angle between wavevectors p and 4. 
The array e ( t ) k p q  is called the triad relaxation time. Physically it may be thought of 

as the decay time for triple correlations, ( U k v p U q ) ,  due solely to the effects of third and 
higher-order cumulants. The prescription for obtaining the value of @ ( t ) k p q  depends on 
the particular procedure used in deriving (2.1) and additional modelling assumptions. 
For our purpose we need not choose a specific expression for 6 ( t ) k p q ,  and we leave it 
arbitrary except for two restrictions on its form. 

The first restriction is that &pq remains unchanged under permutation of k, p and 4$. 
This symmetry condition ensures that equation (2.1) conserves the appropriate 
quadratic invariants of the inviscid Navier-Stokes equation. For d = 2 there are two 
such invariants: the total energy, E T  = 5 d2kUk, and the total enstrophy, ZT = 
4 5 d2k k2Uk. For d > 2 with the assumption of isotropy there is only one non-trivial 
invariant, the total energy E T .  Furthermore, the symmetry of 0 k p q  ensures that the 
absolute equilibrium spectrum predicted by statistical mechanics is a stationary solution 
of (2.1). Calculated from either a canonical or microcanonical ensemble (Kraichnan 
1975, Basdevant and Sadourny 1975, Salmon et a1 1976) the absolute equilibrium 
spectrum (assuming an ultraviolet cut-off) is 

u k  = (a  + bk2)-l (2.5) 

with a and b determined by ET and ZT for d = 2, and with b = 0 and a determined by ET 
for d > 2. The methods of equilibrium statistical mechanics which produce this result 
are discussed in S: 3 .  Here we have stipulated an ultraviolet cut-off in order to avoid an 
ultraviolet catastrophe (i.e. infinite total energy for finite a and b). We shall have more 
to say about this cut-off later in this section. 

The second restriction on &pq is that it must be non-negative. For d 2 2  this 
condition is sufficient to ensure that the energy spectrum predicted by (2.1) is non- 
negative for all wavenumbers at all times (Rose and Sulem 1978). For analytic 
extensions of (2.1) to d < 2 even the non-negativity of &pq fails to ensure realisable 

t In Fournier and Frisch (1978), the coefficient cd should be c d  = 4 sd-l/(d - 1)'Sd. In Rose and Suiem 
(1978), the Coefficient Cd should be c d  = 8 sd-l/(d - 
$ The direct interaction (Kraichnan 1959) derivation of (2.1) produces a 8 ( t ) k p q  which involves an integral 
over the history of the spectrum and which is not symmetric in k,  p ,  and q. However, near equilibrium one can 
invoke the fluctuation-dissipation theorem, and this leads to a symmetric expression for the direct interaction 
8( t ) tpq  (cf Kraichnan 1959). 

sd. 
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results; thus we shall not consider (2.1) to be valid for d < 2 and our discussion will only 
be for d 3 2 (cf Fournier and Frisch 1978). 

In the next section we shall give a full discussion of the general prescription for 
obtaining the entropy as a functional of the spectrum. For the moment we shall simply 
introduce the functional 

as the functional which in this problem plays the role analogous to the Boltzmann 
entropy. This functional, first used by Edwards and McComb (1969), yields the same 
value for entropy in equilibrium as given by the canonical Gibbs prescription (cf Q 3). 
We note that subject to the constraint of prescribed total energy (and enstrophy for 
d = 2) this S is maximal for the equilibrium spectrum (2.5), as can be checked by using 
the method of Lagrange multipliers (cf Q 3). 

To calculate dS/dt from (2.1) we need to assume that U;' is finite. Physically this 
assumption implies that all modes have some energy (which may be arbitrarily small). 
Then using (2.1) with (2.3) and (2.4) we obtain 

k2(p2+q2) 2k'p2 
+(d  -2) (-u7----)] - j ddk Yk2 

k u k  up 

with 
2 1 sin a 

drjpdq ddk ddp ddydd'(k + p  +q)61,,, (--) k ukupuq. 
2(d - 1)2 

Everywhere in our calculations we assume an ultraviolet cut-off (i.e. all integrals are 
cut off at a given maximum wavevector magnitude, kmax). This insures that the integral 
lddkvk2, is finite. This also avoids problems which would otherwise develop in 
considering the inviscid problem (i.e. v = 0). Specifically, in the inviscid limit without 
ultraviolet cut-off and with an initial energy spectrum for which all moments are defined 
i.e. 

5 k" u k  ddk <CO n 3 0  

singularities (i.e. diverging moments of the spectrum) may develop after a finite time 
(Fournier and Frisch 1978, Rose and Sulem 1978). This would spoil the convergence of 
the integral ldrjpdq. . , in (2.7). Assuming an ultraviolet cut-off ensures that the 
manipulations to follow remain valid at all times t. 

We note that according to the law of sines and the symmetry of 6 k p q ,  the expression 
drL$L is fully symmetric under permutation of k, p and q. Thus by interchanging the 
integration variables in (2.7) and summing the re<ulting expressions we obtain 

+(d-2)k2p2 1 (E---) l 2  ] -1 ddkuk2. 
k UP 

With v = 0, dS/dt is manifestly non-negative. The only analytic solution to dS/dt = 0 is 
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the equilibrium spectrum (2.5). The difference in the equilibrium spectrum for d = 2 
and d > 2 is reproduced by the vanishing of the term proportional to d - 2 in (2.8) for 
d =2 .  

Thus second-order Markovian closure with ultraviolet cut-off implies that for v = 0 
the functional S increases monotonically to its stationary value given by canonical 
equilibrium-the desired E-I theorem. 

In numerical simulations of two-dimensional, viscous, unforced turbulence with a 
given ultraviolet cut-off k,,, and given initial energy spectrum, two qualitatively 
different behaviours are observed depending on the strength of the viscosity (Deem and 
Zabusky 1971, Cook and Taylor 1972, Montgomery 1972, Taylor 1972, Fox and 
Orszag 1973). If the viscosity is ‘sufficiently strong’, then a damped turbulence state 
develops with inertial and dissipation ranges. If the viscosity is ‘sufficiently small’, then 
a quasi-equilibrium spectrum develops. Specifically, Fox and Orszag (1973) state that if 
the viscous time scale is large compared with the eddy turnover time for all retained 
scales (i.e. for all k =z k,,,), then approach to equilibrium can be expected. We should 
be able to relate this, at least.qualitatively, to the rate of change of the functional S.  For 
a given spectrum the rate of change of total energy and enstrophy are proportional to 
the viscosity. If the viscosity is sufficiently small so that the integral jddkvk2 in (2.7) is 
negligible initially, then an increasing entropy implies that the spectrum evolves toward 
an equilibrium form determined by the slowly varying values of total energy and 
enstrophy. Of course, the development of a quasi-equilibrium range in this case is 
artificial and not physically relevant because of the imposition of a k,,, which loses the 
important physics of the dissipation range (Fox and Orszag 1973). On the other hand, 
the problem of flow over irregular topography (Bretherton and Haidvogel 1976, 
Herring 1977, Holloway 1978) perhaps represents a system for which this concept of 
entropy increase may be relevant even for dissipative dynamics. The equilibrium state 
for this system is characterised by strong correlations between flow and topography. 
Simulations show that flows initially uncorrelated with topography rapidly (i.e. on the 
order of an eddy turnover time) develop such correlations with topography, and this 
does not appear to be an artifact of spectral truncation (Holloway 1978). We might 
interpret this initial rapid development of correlations in terms of a rapidly increasing 
entropy functional. 

There are earlier references in the literature to the H theorem in the context of 
two-dimensional flow. Cook (1974) outlines the derivation of the H theorem by 
making reference to the work of Taylor and Thompson (1973). Newel1 and Aucoin 
(197 1) suggested that an N theorem for the two-dimensional Rossby wave problem 
should follow by analogy to their derivation of an H theorem from the Boltzmann 
equation for ‘classical phonons.’. This analogy is not strict; unlike the phonon problem 
the dynamics of Rossby wave interactions do not admit a Harniltonian description and 
the interaction between Rossby waves cannot be represented by a collision cross 
section. However, for d = 2 equation (2.1) is valid for anisotropic as well as isotropic 
spectra; in fact, it is identical in structure to the closure equation for Rossby waves on a 
p plane with the only difference occurring in the actual values of B(t )kgq  (Holloway and 
Hendershott 1977). Hence, the inviscid Rossby wave problem also satisfies the H 
theorem with the same final equilibrium state (2.5), and only the rate of entropy 
increase is affected by the inclusion of wave propagation. 

A different approach to the question of an N theorem for fluids is presented by 
Montgomery (1976). He  investigates the behaviour of the probability distribution for 
velocity amplitudes as described by a BBGKY hierarchy. By making the same sort of 
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approximations as are used to derive the closure equation (2.1), he obtains an equation 
for the marginal probability distribution of the Fourier amplitude of the velocity field. If 
yi represents the real or imaginary part of the Fourier amplitude of velocity vk and if 
f j (y i )  represents the marginal univariate probability distribution, then the direct ana- 
logue of the classical Boltzmann entropy is 

Montgomery shows that this functional (2.9) satisfies an H theorem and infers that the 
H theorem in terms of the energy spectrum must hold. Our work is complementary to 
this in that we demonstrate an H theorem entirely in terms of the spectral equations. 
Note that when f i (y i )  is a Gaussian distribution with correlation given by uk, (2.6) and 
(2.9) become identical up to an additive constant. 

3. General statistical mechanics results 

Before proceeding to the question of H theorems for more complicated systems, we 
need to establish a representation sufficiently general to apply to systems involving 
multiple species of fields (e.g. velocity, topography, magnetic, etc) and suitable for 
application of established statistical techniques. We assume a representation in which 
the dynamics are given in terms of a discretely indexed set of real independent variables, 
{ y I } .  By independent we intend that there should be no holonomic constraints (i.e. 
diagnostic relations) on the variables y l .  For example, with periodic boundary condi- 
tions we would use the real and imaginary parts of the Cartesian components of the 
Fourier amplitudes v, ( k ) ,  and eliminate redundant fields using the incompressibility 
relations, k - v ( k )  = 0, and the hermiticity constraint, ~ ( k )  = v * ( - k ) .  The discrete 
indexing is convenient for this section, but this condition can be relaxed afterwards. 

The dynamical independent variables { y l }  form a phase space. The motion of a point 
through this phase space represents the evolution of a particular system. The motion is 
governed by the primitive fluid field equations, iz = Cl, ( { y } ) ,  where Cl , ( { y } )  is a quadra- 
tically nonlinear function of the field variables. 

We introduce statistics by assuming an ensemble of systems with a distribution of 
initial conditions. P({y} ,  t )  gives the distribution of phase space points as each system 
evolves independently. The quantities of interest to us are the statistical moments 
defined by the average 

YI, I = (YIY, * * * Y z )  = I (YIY, . ' ' Yz)P({Yl, t )  I1 dYk. 
k 

The distribution P({y} ,  t ) ,  evolves according to the continuity equation (cf Tolman 
1938). Non-dissipative (e.g. inviscid) fluid dynamics satisfies the condition (Lee 1952, 
Leith 1971) 

Hence the Liouville theorem 

aP aP 
a t  i ay i  
- + l j i - = o  (3.2) 
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holds; that is, the 'flow' of a distribution of points in phase space is incompressible. It 
follows from Liouville's theorem that if there are dynamical invariants of the primitive 
field equation, then any function of these invariants is a stationary probability dis- 
tribution (cf Tolman 1938). 

The absolute equilibrium distribution contains only the information given by 
prescribed values of the dynamical invariants. The invariants of concern in most fluid 
problems are quadratic, that is, they can be written in the form 

(3.3) 

Here and throughout we adopt the notational convention in which repeated numerical 
subscripts are to be taken as indices which are summed over unless oJherwise stated. We 
call 1:;) the invariant kernel; the superscript ( I )  refers to the particular invariant 
considered (e.g. the total energy or helicity in three-dimensional flow). With no loss of 
generality we assume I:,!) = I;:). Invariants of other than quadratic order are of course 
possible (e.g. the spatial integral of any power of the vorticity in two-dimensional flow). 
However in most fluid problems higher-order invariants are not used in specifying the 
equilibrium ensemble for various reasons (e.g. they fail to survive as invariants in a 
spectral representation). We restrict ourselves to consideration of only quadratic 
invariants; for further discussion on this matter see Salmon et a1 (1976), Fyfe et a1 
(1977), Kraichnan (1973). Fournier and Frisch (1978) and Thompson (1974). 

If the initial ensemble is such that all systems have the same prescribed values of the 
dynamical invariants, then the appropriate equilibrium distribution is the micro- 
canonical distribution (Tolman 1938). However, calculating moments with the micro- 
canonical distribution is quite cumbersome. With invariants which involve only 
monomials of low order in the fields, it can be shown (Salmon et a1 1976) that 
calculation of moments of low order compared with the total number of degrees of 
freedom is equivalent and far more convenient with the canonical equilibrium dis- 
tribution specified by 

( I " ) )  = E'. (3.4) 

This is suitable for our purposes since the closure equation is defined in terms of the 
average second-order moments. The canonical equilibrium distribution (cf Tolman 
1938) is 

where N is a normalisation constant. The coefficients p ( ' )  are generalisations of the 
inverse temperature of particle statistical mechanics and are determined by the 
conditions (3.4). If we define the matrix I by 

(3.6) 

then the canonical distribution with unit normalisation (cf Leslie 1973, Orszag 1977) 
has N = 11/1'2(~)-n'2 where 111 is the determinant of the matrix lib For this distribution 
to be valid, I must be positive definite. This condition is assured if the values of the E"), 
which determine the p"), are physically realisdble. The equilibrium second-order 
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correlation matrix, calculated from (3.5), is (cf Fisz 1963) 

Y? = 3 I i l ,  (3.7) 
Note that Y y  is a positive definite matrix and its inverse is an invariant kernel. 

Second-order Markovian closures attempt to determine the evolution of the 
second-order correlations Y,,. For simplicity we assume throughout that the average 
field vanishes identically. We wish to obtain a general prescription for the entropy as a 
functional of the YLJ. Although it is possible to diagonalise the symmetric matrix Y,,, it 
will be important not to do so when considering the general dynamical problem. This is 
because the diagonalisation transformation will not in general be independent of time. 
For example, in the barotropic flow over topography problem the correlation matrix 
involving the stream function CC, and topography h may initially have no off -diagonal 
elements ($h )  but these will develop, and there is no way of finding a purely diagonal 
representation which will remain so. As another example, for isotropic, three-dimen- 
sional flow a diagonal representation is possible at all times, however, this is not so if the 
condition of isotropy is relaxed and a non-vanishing amount of helicity is admitted. 

To obtain a general prescription for the entropy functional, we take an approach 
based on information theory. The functional 

is a measure of sharpness of the distribution P and can be used as the information 
content of the distribution (cf Everett 1973). If we are given the values of the moments 
Y,, (with Y, = 0) and use these as constraints on the possible form of P, then the 
minimum value of H[P] gives the information contained in just the knowledge of the 
moments Y,,. By using the method of Lagrange multipliers (Salmon 1978b), we obtain 
the distribution, 3, which minimises H [ P ]  subject to the given constraints. This 
distribution, 3, is the multivariate Gaussian with second-order correlations, YL, (and 
vanishing average field, Y, = 0). By substituting p into the definition (3.8) we obtain 

(3.9) 

Y denotes the second-order correlation matrix and n is the total number of degrees of 
freedom. H[p]  is the information given by a knowledge of the Y,,. Heuristically we 
consider entropy to be the lack of information and thus write 

H [ F ]  = -+In 1 ~1 - i n  (In 2.rr + 1). 

S [  Y ]  = - H [ P ]  = 5 In 1 Y 1 + i n  (In 2.rr + 1). (3.10) 

When investigating the evolution of this entropy for a given system we may for 
convenience drop the constant term, i n  (In 2.rr + 1). Note that since the determinant I Yl 
is invariant under similarity transformation, the functional S [  Y ]  is independent of 
choice of orthonormal basis for the field variables { y }  (cf Byron and Fuller 1969). 

As a consistency check we demonstrate that the functional S [  Y ]  is maximal for yi, 
given by equilibrium statistical mechanics. To do this we perform the variational 
calculation 

(3.11) 

The a(') are Lagrange multipliers to be adjusted to give the prescribed values E'" of the 
invariants. Using the definitions of I Y1 and Y,' in terms of cofactors (Byron and Fuller 
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1969), and the symmetry of Yjj we obtain 

s 
- S [  Y] =; Yi' .  s Yjj 

1709 

(3.12) 

Hence, S [  Y] is maximal for 

As the a!(') are to be determined by the same conditions (3.4) that determine the p"),  
which define the equilibrium distribution, we regain the equilibrium result (3.7). Thus 
the functional S [  Y] has the property of entropy of achieving its maximum value only in 
equilibrium. 

Next we demonstrate that the functional S [  Y j  obeys a generalised H theorem of the 
Gibbs type. The Gibbs type H theorem is an exact dynamical statement about the 
decrease of information contained in a 'smoothed' probability distribution (cf Tolman 
1938). We assume, as before, that mean fields vanish identically. 

Let P({y}, t )  be the exact probability distribution determined from the initial 
conditions and Liouville's theorem. It can then be shown by using Liouville's theorem 
that the information H [ P ]  determined from the exact distribution does not change with 
time (cf Tolman 1938). That is, 

J P(t) In P( t )  I1 dy, = J ~ ( 0 )  In ~ ( 0 )  I7 dyi 
i 

where P(t) =P({y}, t). 

correlations prescribed by the exact dynamics and zero mean fields; that is 
Let P ( { y } ,  t )  be the 'smoothed' distribution defined as a Gaussian distribution with 

Since f i ( t )  is Gaussian its information content is simply the negative of our entropy 
functional given with the exact correlations YrI ( t ) .  Furthermore, as discussed above the 
information content of P(t) must be less than or equal to the information content of 
P(t) ,  that is 

f i ( t )  In f i ( t )  dy, S 1 P(t) In P(t) I7 dy,. 
I I 

If we assume Gaussian initial conditions, then P(0)  = f i (0) .  Making this assumption 
we then have 

s ( t )  -s(o) In I ~ ( t ) l  -$In I Y ( o ) ~  

= -1 ( f i ( t )  hl P( t )  - f i ( o )  In f i (0 ) )  dyk 

= - 1 ( f i ( t )  In @ ( t )  -P(o)  'n P(0))  dyk 

= - 5 (fi(t) hl P ( t )  -P( t )  P(t)) dyk 

k 

k 

k 

23 0. (3.13) 
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That is, for both positive and negative time, S(0) is the minimum value of S ( t )  
determined by the exact dynamics. We emphasise that this is an exact result of 
Liouville’s theorem. The information content of the smoothed distribution $ ( t )  cannot 
increase in time. This same result can also be demonstrated for the Boltzmann entropy 
(2.9) used by Montgomery (1976) (Carnevale 1979). 

If P(0)  is the equilibrium distribution, then S ( t )  = S(0) for all time. Otherwise, 
although the equality holds initially because P(0)  is defined Gaussian, we expect the 
inequality to develop as the interactions in phase space cause the moments of P( t )  to 
deviate from the initial Gaussian moments. 

The Gibbs-type H theorem does not give a quantitative evaluation of the rate of 
change of S( t ) .  For that we need to know how the second-order correlations change in 
time; this is provided by the second-order Markovian closure. As the closure equation 
involves only the instantaneous values of the second-order correlations, we should 
expect it to reflect that the information given by just the second-order correlations 
degrades with time. That is, we expect second-order Markovian closure to be consis- 
tent with S( t )  increasing with time. 

The ‘experimental’ entropy for a system in equilibrium is defined through macro- 
scopic parameters, and its value can be obtained through the Gibbs prescription 

J i 
(3.14) 

with P({y})  defined as the canonical distribution consistent with the macroscopic 
parameters (cf Jaynes 1965). We note that under our assumption that all the dynamical 
invariants are quadratic the canonical distribution is multivariate Gaussian; and hence 
SG (3.14), the Boltzmann prescription S ,  (2.9), and our functional S [  Y ]  (3.10) all give 
the same value for the entropy of the system in equilibrium. 

4. Generalised formafism and H theorem 

The primitive field equations for incompressible fluids involve a quadratic nonlinearity 
and may be written as 

As in the previous section the y, are the real independent dynamical variables: Both 
kernels A and L are real and with no loss of generality we take A123 to be symmetric in 
its last two indices. Again we denote instantaneous moments by Y12. . .z  = ( y 1 y 2 .  . . y z ) .  
To simplify, we assume that the average field, Yl ,  vanishes identically; this implies that 
A 123 Y23 vanishes as well. 

A hierarchy of moment evolution equations is obtained by using (4.1) to calculate 
the time derivative of successively higher-order monomials constructed from the { y  }, 
and ensemble averaging. Due to the quadratic non-linearity, the evolution of the n th 
order moment depends on the ( n  + 1)th order moment. Closures are attempts to reduce 
the infinite hierarchy to a closed set of equations (Monin and Yaglom 1971, Leslie 
1973). 

To emphasise possible Gaussian solutions, it proves convenient to recast the 
moment hierarchy in terms of cumulants, which for third and higher orders vanish for 
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Gaussian statistics. The second to fourth order cumulants are explicitly (assuming 
Y1= 0) 

Y E 2  = Y 1 2  

y y 2 3  = y 1 2 3  

y i 2 3 4  = y 1 2 3 4 -  y 1 2 y 3 4 -  y 1 3 y 2 4 -  Y 1 4 y 2 3 .  

The first two equations of the cumulant hierarchy are 

+ A i 4 5 Y & 2 3  + A 2 4 5 Y & 3 1  + A 3 4 5 Y k 1 2  f L 3 4 Y 4 i z .  

(4.3) 

As indicated in the introduction, second-order Markovian closure may be achieved 
in a variety of ways. The most straightforward in the present context is the EDQNM 

closure. This closure results from two distinct approximations or procedures-the 
eddy-damped quasi-normal procedure and Markovianisation. 

The eddy-damped quasi-normal procedure parametrises the effect of fourth- and 
higher-order cumulants on third-order cumulants through eddy damping (Orszag 1970, 
Rose and Sulem 1978). Here we generalise this procedure by making the following 
replacement in equation (4.3) 

A 1 4 5  y:523 + A 2 4 5  y & 3 1  + A 3 4 5 Y : 5 1 2  * - 7711'22'33'y1'2'3'* (4.4) 

We leave the 'eddy viscous' term 7711'22'33' unspecified except to note that for consis- 
tency of the replacement (4.4), 7711'22'33' should be symmetric under permutation of the 
indices in the pairs (1, l'), (2, 2') and (3, 3') (i.e. 7711'22'33' = 7722'11'33' = etc). With this 
parametrisation we can rewrite (4.2) as 

(4.5) Y 1 2 3  = 2 c 1 2 3  - k  11'22'33'y1'2'3'. 

Here we have introduced the following shorthand definitions 

C 1 2 3  " A 1 4 5  Y 4 2  Y 5 3  + A 2 4 5  Y 4 3  Y 5 i  + A 3 4 5  Y 4 1  Y 5 2  

and 

P l 1 ' 2 2 ' 3 3 '  11'22'33' +7711'22'33' 

with 

A 11'22'33' -L11 '822 '833 ' -  8 1 1 ' L 2 2 ' 8 3 3 ' -  811 '822 'L33 ' .  

Note that by definition C 1 2 3  is symmetric under permutation of 1, 2 and 3. 
The formal solution to (4.5) is 

with G(t, t')11'22'33' the retarded Green function. The procedure of Markovianisation 
may be viewed as an approximation in the following sense. The Green function will 
naturally be peaked for small values of the separation ( t  - t ' ) .  Thus it is reasonable to 
Taylor-expand C(t ' )1 '2 ,3 '  in the integrand of (4.6) about time t. Markovianisation 



1712 G F Carnevale, U Frisch and R Salmon 

consists of dropping all terms in the expansion of order ( t  - t ')G(t, t ' )  leaving 

with 8 defined by 

811,22,33, is the generalisation of the triad relaxation time (Kraichnan 1972); according 
to this construction, it is symmetric with respect to permutations of the pairs of indices 
(1, 1'), (2,2') and (3,3'), Using result (4.7) in equation (4.2) results in an evolution 
equation for second-order correlations involving only their instantaneous values. This 
generalised EDQNM equation is 

Yll,-Ll2Y21,-L1,2Y21= 2Oii2233A1,23Ci23 + ~ ~ I T ~ ~ A I z ~ C T Z S .  (4.9) 

A necessary condition for the validity of (4.9) is that it must conserve in the 
ensemble average all the quadratic invariants of the primitive equation, (4.1). By using 
(4.1) to compute the rate of change of a quadratic form 1") = I f i y 1 y 2 ,  and using the 
independence of the variables {y}, we find that an invariant kernel must satisfy the 
following conditions 

(4.11) 

In the ordinary sense of non-dissipative (e.g. inviscid) dynamics, we understand that the 
linear kernel Lii is restricted such that (4.10) is satisfied by the solutions of (4.11) (e.g. 
the kernel for the total energy satisfies (4.11) and (4.10) when viscosity vanishes). By 
using the pairwise symmetry of 811,22,33~, it can be shown that according to (4.9) the 
temporal derivative of ( I " ) )  =I\2Y12 vanishes for any kernel 1:;' which satisfies (4.10) 
and (4.11). Thus, the generalised EDQNM equation conserves all the quadratic invari- 
ants of the primitive equation. 

Similarly the pairwise symmetry of 811,22~33, ensures that the canonical equilibrium 
correlation, Y y ,  is a stationary solution of (4.9). This can be seen by substituting 
Y y  = $ I i '  into (4.9) and noting that since Ijj  is an invariant kernel it satisfies 
conditions (4.10) and (4.11). 

In order to ensure that the functional S = In I Y I and its derivative 

(4.12) 

are well defined, we need to assume that the correlation matrix Yij is non-singular and 
hence invertible. Since Yii is. by definition positive semi-definite, this additional 
assumption implies that it is positive definite. 

Using (4.9) we obtain 

(4.13) 
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Then using the pairwise symmetry of 011 '22 '33 '  and applying some algebraic manipula- 
tion we obtain 

(4.14) 

with D l 2 3  defined by 

0 1 2 3  E Y ; ; A 4 2 3  + Y 2 4 1 A 4 3 1 +  Y i i A 4 i z .  (4.15) 

The term L 1 l ,  the trace of the linear operator, vanishes if we assume that Liouville's 
theorem holds. That is S $ l / S y l  = 0 implies that A 1 1 3  = 0 and L1l = 0. Thus we have 

(4.16) 

where, for convenience, we have adopted the shorthand notation n = (1, 2, 3) for the 
indices and introduced the definition 

Xnn'  = Y 1 1 ,  Y 2 2 ' Y 3 3 ' #  

Note that since xnn, is the Kronecker pIoduct of positive definite matrices, it is also 
positive definite (cf Marcus and Ming 1964). 

Notice that for non-dissipative dynamics, 0 1 2 3  vanishes if and only if Y;' is an 
invariant kernel (cf equation (4.11)). Furthermore, since the generalised EDQNM 
equation conserves all quadratic invariants, it follows that D l 2 3  evolving according to 
the EDQNM equation can vanish if and only if Y,, evolves to the canonical equilibrium 
matrix, Y y  = & I ,  as defined in 0 3. 

Thus if we can demonstrate that the product xnriOAn, appearing in (4.16) is positive 
definite, then S is stationary only in equilibrium and is otherwise monotonically 
increasing in time. Notice also that if the product X O  is positive semi-definite then the 
determinant, IYI, cannot vanish since 1nlYI is non-decreasing in time. Thus the 
correlation matrix Y{, with all positive eigenvalues cannot develop zero eigenvalues and 
hence must remain positive definite (i.e. realisable). 

In all the particular problems mentioned in the introduction (i.e. MHD turbulence, 
two-layer flow and flow over irregular topography), for which H theorems have been 
demonstrated (Carnevale 1979), the fields are assumed homogeneous. Under this 
assumption the correlation matrix has block diagonal form. If we denote the interblock 
index by k (i.e. wavevector or other spectral index) and the intrablock index by (Y (e.g. a 
discriminates between different species of fields), then Y 1 2  can be written as 

Y l Z  = y;::: = Y a ; a z a k l , k ? .  ( k  1 (no summation). (4.17) 

Furthermore it is assumed that On,, is positive definite, and that it does not mix 
intrablock elements. That is 

OklkZkB 0. (4.18) 

These assumptions imply that xnn, = Y I I ,  Yz2, Y33, and On,,, are symmetric in n and n',  and 
that x and 0 commute (i.e. o , ~ O ~ ~ ,  = Onaxan,). Hence x n n '  and On,, can be simultaneously 
diagonalised by an orthonormal similarity transformation (cf Byron and Fuller 1969). 
This, together with the positive definiteness of xnn' and On,,, implies that the product 

- 
011 '22 '33 '  = o k l k 2 k ~ S k 1 , k i S  k 2 , k i S k 3 , k ; S a i , a i S a 2 , a i s a 3 , a j ,  
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,ynEBE,, is indeed positive definite. Thus any homogeneous EDQNM equation which has 
a generalised interaction time 0 1 1 ~ 2 2 ' 3 3 '  of the form (4.18) satisfies the H theorem. 

It has been suggested in studies involving multiple species of fields (Salmon 1978a, 
Holloway 1978) that the triad relaxation time 6 k l k 2 k 3  in (4.18) should also depend on 
the field species index. In that case (4.18) is replaced by On,,, = dn)S,, , ,  with d n )  > 0. If 
it is further assumed, as in Salmon's (1978a) equivalent-layers model of stratified flow, 
that the correlation matrix Yl, is diagonal, then the Kronecker product, ,ynn,= 
Yll, YZ2, Y33, is also diagonal. The product of the positive definite diagonal matrices On,, 
and x,,' is positive definite and hence the H theorem must hold. On the other hand, for 
the general case of block diagonal correlations, Yl1' = YLk:?i8kl,kl, the product is 
, y n E B E n ,  = X , , , , O ( " ' ) .  To determine whether such a product is positive definite we form 
the symmetrised product , ynr iOEn,  + X , ~ ~ O ~ ,  and check whether all the principal sub- 
determinants are positive (Marcus and Ming 1964). The result is that for generally 
non-diagonal correlations Yll,  the product is, in gene;al, positive definite if and only if 
tJnn, is of the more restrictive form (4.18). Thus we see that the simple diagonal model, 
e,,, = O'"'S,, , , ,  for the relaxation time will not in general lead to an H theorem. 

A positive definite relaxation time matrix On,, assures us that there are no non-trivial 
solutions D, to O,,,D,, = 0, and hence entropy is stationary only in equilibrium, 
However, since D,( = YYiA423 + Y;iA431+ YiiA412) is not arbitrary, the condition of 
positive definiteness for On,, can be relaxed in particular cases with the same result. For 
homogeneous systems the non-linear kernel A 123 vanishes unless the wavevectors 
kl, kz  and k3 form a triad (i.e. their lengths form the sides of a triangle). This implies 
that with homogeneous correlations, yll, = Y&k,'di8kl,ki, D, also vanishes except for 
triads (kl,  k2, k3). Thus we need only restrict 6 k l k Z k 3  of (4.18) to be positive on triads to 
insure that dS/dt vanishes only in equilibrium. Although it is usually physically 
reasonable to assume that the triad relaxation time e k l k 2 k 3  is non-vanishing for all 
triads, certain limiting cases where we would wish to relax this condition come to mind. 
For example, in the low-amplitude limit of Rossby waves on a p plane (cf Holloway and 
Hendershott 1977, Longuet-Higgins and Gill 1967) it can be shown that 6 k l k 2 k 3  

vanishes unless the triad wavevectors ( k l ,  k2, k3) have Rossby frequencies Cuk = 
- pk, /  k 2  which satisfy a resonance condition, wkl + wk2 + O k 3  = 0.  However, because of 
the structure of the nonlinear kernel A123 for this problem (cf Holloway and Hender- 
shott 1977) there is still no non-trivial solution D, to dS/dt=O (i.e. entropy is 
stationary only in equilibrium). 

As a final comment on this section we note that we used the assumption that 
Liouville's theorem holds (i.e. Si1/Sy1= 0) simply to assert that the trace of the linear 
operator L11 vanished. Alternatively we could have just assumed Ll1 vanishes but not 
invoked the full Liouville's theorem, which also requires A 1 1 3 ~ 0 .  However if the 
canonical equilibrium solution exists then its inverse, which is an invariant kernel, must 
satisfy condition (4.11), that is 

YTiA423 + Y&A431 + YTiA412 = 0. 

This implies that 

Ai13 = -$ YYiAi24Yz4. (4.19) 

Under the assumption that the average field vanishes identically, which implies 
A124Y24=0, (4.19) reduces to Al13 = 0. Thus the existence of Yeq (with zero average 
fields) implies that Liouville's theorem holds. 
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5. Relationship between exact dynamics and the EDQNM H theorem 

We have shown in 8 3 that the exact dynamics implies a Gibbs-type H theorem (i.e. 
S(t) -S(O) L 0 for any t for Gaussian initial conditions). In § 4 we demonstrated that 
the EDQNM closure for homogeneous fields with the usual triad relaxation time 6 k p q  

implies a Boltzmann-type H theorem (i.e. dS/dt L 0 for all positive t ) .  Here we wish to 
demonstrate that the EDQNM H theorem can be derived directly from the Gibbs-type H 
theorem. 

We use the notation of 8 4, and begin with the primitive equation (4.1). Under the 
assumptions that the average field vanishes identically and that the initial distribution is 
Gaussian, we immediately obtain from (4.1) the result 

(5.1) Yl l , ( t )  -L12Y210) -Ll t2Y2dt)  = 2tA1r23C123(0) +2tA123C1,23(0)+O(t2) 

with 

Under the assumption that Liouville’s theorem holds (i.e. S$1/8yl= 0), the term ,511 in 
(5.2) vanishes identically. Furthermore according to the analysis of § 3, Liouville’s 
theorem implies that S ( t )  - S ( 0 )  3 0;  therefore, dS/dtl,=o = 0 and d S/dt I r=O 2 0. Thus 
Liouville’s theorem implies 

2 2  

2A 123c1’23(0) YTI? (0 )  3 0 (5.3) 

for arbitrary initial correlations Y,,(O). 
Notice that (5.3) is precisely the result we need for an H theorem for second-order 

Markovian closure with relaxation time e,,,,, = a,,,,,. That is d2S/dt2/ t=O for the exact 
dynamics is dS/dt for the EDQNM closure with this simple relaxation time. This result 
can be extended to cover the more complicated case in which we assume homogeneous 
fields (i.e. yll, = Y & k , ‘ , i 8 k l , k i )  with relaxation time 

611’22’33’ = 6 k l k Z k a 8 n , n 8  (5.4) 

by simply replacing A123 by =A123 and YII, by Y L k / a ; 8 k , , k i  in the above 
equations (assuming that the modified dynamics also satisfies Liouville’s theorem). 
Thus the H theorem for second-order Markovian closure of § 4 for homogeneous fields 
and relaxation time (5.4) is a direct consequence of Liouville’s theorem. This is also 
true in the case of a species dependent triad relaxation time dfl) with urely diagonal 

above equations. 
correlations Yll, = Y(l’S1,lt as can be checked by replacing A123 by g, 6 A123 in the 

6. Conclusion 

The primitive field equations for fluids represent conservative dynamical systems when 
spectral truncation is imposed and when viscosity and other sources of linear dissipation 
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are neglected. Furthermore, the non-dissipative equations satisfy Liouville’s theorem, 
and canonical statistical mechanics prescribes an equilibrium state determined solely by 
the dynamically conserved quantities. Although there is no proof that these systems are 
mixing or ergodic we may reasonably expect for ‘most’ initial conditions relaxation 
toward equilibrium, and this is verified to a certain extent by numerical simulation 
(Patterson 1973, Fox and Orszag 1973). 

On the other hand, the non-dissipative primitive field equations are time-reversal 
invariant. Thus we can always construct some initial state or conjure some type of 
classical demon to demonstrate evolution away from equilibrium. Consequently an 
exact statistical theory must be capable of representing evolution either toward or away 
from equilibrium depending on the particular circumstances and, therefore, must be 
incompatible with a monotonicity theorem like Boltzmann’s H theorem. This must 
also bc: true for approximate treatments that maintain the time-reversal symmetry of 
the primitive dynamics such as the DIA (Kraichnan‘l959), which can be shown to be an 
exact description of certain model dynamics. On the strength of Liouville’s theorem we 
proved (cf 3 3) that the exact dynamics implies a Gibbs-type H theorem (i.e. for 
Gaussian initial conditions S ( t )  3 S(O)),  which does not imply any particular time arrow. 
As explained in $ 5 ,  the Markovian closure procedure, for which t = 0 is not a 
distinguished time, changes this into an irreversible H theorem of the Boltzmann type. 
It is the Markovian character of closures such as the TFM (Kraichnan 1971) and the 
EDQNM (Orszag 1977, Rose and Sulem 1978) that results in monotonic relaxation 
toward equilibrium. 

Unlike the case of the Boltzmann equation where the H theorem is of direct 
physical relevance, our I1 theorems for closure are generally not immediately relevant 
to the essentially irreversible dynamics of viscous untruncated flow (Orszag 1977, Rose 
and Sulem 1978). Consider a given finite wavenumber band ( k l ,  k 2 ) .  The H theorem 
implies that the nonlinear interactions within this band will tend to bring about absolute 
equilibrium. Even when viscosity is negligible (e.g. in the inertial range), interactions 
with neighbouring wavenumber bands will generally prevent absolute equilibrium from 
being established. Nevertheless, if the characteristic time for evolution to absolute 
equlibrium is of the same order as the time for exchanging excitation between 
neighbouring wavenumber bands (e.g. a local turnover time), then some features of the 
exact non-equilibrium dynamics may be controlled by absolute equilibrium. In evi- 
dence of this the direction in which energy, enstrophy, helicity, magnetic helicity, etc, 
cascade in various inertial ranges in hydrodynamic or magnetohydrodynamic flows can 
be predicted by absolute equilibrium calculations (Kraichnan 1967, 1973, Frisch et a1 
1975). Statistical mechanics methods have also recently found applications in explain- 
ing the changes in kinetic energy spectra in numerical weather prediction and climatic 
models resulting from resolution changes (Frederiksen and Sawford 1980). Although 
such models (e.g. Manabe et a1 1970, Lambert and Meriless 1978) contain both forcing 
and dissipation the spectral change with increasing resolution is very similar to that 
found for inviscid models. 
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